MedGizmo - Electronic skin sensors to control mobile gadgets
11.08.2015, 07:05   iSkin

Electronic skin sensors to control mobile gadgets

We propose iSkin, a novel class of skin-worn sensors for touch input on the body. iSkin is a very thin sensor overlay, made of biocompatible materials, and is flexible and stretchable. It can be produced in different shapes and sizes to suit various locations of the body such as the finger, forearm, or ear. Integrating capacitive and resistive touch sensing, the sensor is capable of detecting touch input with two levels of pressure, even when stretched by 30% or when bent with a radius of 0.5 cm. Furthermore, iSkin supports single or multiple touch areas of custom shape and arrangement, as well as more complex widgets, such as sliders and click wheels. Recognizing the social importance of skin, we show visual design patterns to customize functional touch sensors and allow for a visually aesthetic appearance. Taken together, these contributions enable new types of on-body devices. This includes finger-worn devices, extensions to conventional wearable devices, and touch input stickers, all fostering direct, quick, and discreet input for mobile computing.

Figure 1.  iSkin is a thin, flexible, stretchable and visually customizable touch sensor that can be worn directly on the skin.  We present three novel classes of on-body devices based on iSkin:  (a) FingerStrap , exemplified here with a strap on the index finger for fast,  one-handed control of incoming calls; (b) Extensions for wearable devices , exemplified here with a rollout keyboard attached to a smart watch; and SkinStickers , exemplified here with (c) an input surface for a music player attached to the forearm, (d) a click wheel on the back of the hand and (e) a headset control behind the e
The publication received a Best Paper Award at ACM CHI’15 (top 1% of submissions).
Download Publication
Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Majidi, and Jürgen Steimle
iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’15). (Best Paper Award, full paper) [DOI]

Report by Reuters
Mon Aug 10, 2015 By Matthew Stock

A skin-worn sensor that turns the human body into a touch sensitive surface for controlling mobile devices has been developed by scientists in Germany. iSkin is made from biocompatible silicone rubber with pressure-sensitive sensors that are stuck to the skin of the users, allowing them to use their own body to control mobile devices.

Developed by scientists at the Max Planck Institute for Informatics and Saarland University, the experimental system has been produced in different shapes and sizes to suit various locations on the body, such as the finger, forearm and even behind the ear-lobe. The sensor is capable of detecting touch input pressure even when being stretched or bent. With the current prototypes; wearers can answer incoming calls, play music and adjust volume. A roll-up keyboard for use with a smart watch has also been designed.

iSkin's thin, soft and flexible design presents new possibilities for mobile interaction that have not been possible with existing hardware, according to co-developer Martin Weigel.

"Current electronics are mostly using rigid components which are very uncomfortable to wear on the body and are limiting the locations to, for example, the wrist or on the head to be worn. But our sensor is a flexible and stretchable sensor, so it can cover many locations. For example, even the backside of the ear or the forearm. So, we have a much larger input space than current electronics allow for," he said.
The prototype is based on advances in so-called 'electronic skin' that allow robots to better sense their environment, as well as more human-like prostheses that can sense contact, pressure and temperature. iSkin's makers saw this as an ideal platform for on-body interaction for mobile computing.

"(The) technology is initially coming from robotics where it's used to give robots kind of a feeling similar to the human body, to human skin. However, we are the first to look into how we can use it on the body to control mobile devices; so as a kind of second-skin which nicely conforms to your body," said Weigel.

The base material is polydimethylsiloxane (PDMS), an easy-to-process silicone-based organic polymer. Conductive carbon black powder is added to the liquid silicone before it is spread flat by a thin-film applicator. After creating the tattoo-like designs on a computer, a laser-cutter traces out the design which makes up the sensor. This is then sandwiched between two clear sheets of silicone.

"The sensor is made out of bio-compatible silicone and carbon-doped silicone. So there are carbon particles inside the silicone which make it conductive so we can use it for electronics," explained Weigel.

The stickers are attached to the body using a medical-grade adhesive that can be easily peeled off after use without hurting the skin.

The current prototypes are wired to a computer, although the technology could evolve to use integrated microchips. Weigel also hopes that it could one day be possible to incorporate an energy-harvesting system that would power iSkin via the wear's body.

While they have no immediate plans to develop this iSkin prototype further, the team hope it will inspire future research on electronic skin for human-computer interaction.


11.08.2015, 07:05   iSkin
Image by iSkin
Views: 638

Disclaimer

When we provide links to other Web resources, the Company is not responsible for the accuracy, usefulness, safety, or intellectual property rights of or relating to such content.

Overview and Analysis

of information from Internet resources. Follow our Instagram Daily Feed @MedGizmo, Twitter Daily Feed @MedGizmo.
© 2016 MedGizmo