MedGizmo - Wearable Electronics and Smart Textiles: A Critical Review (Part 1)
23.07.2015, 14:04   MDPI AG (Basel, Switzerland)

Wearable Electronics and Smart Textiles: A Critical Review (Part 1)

Matteo Stoppa and Alessandro Chiolerio *
Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino, Italy
Sensors 2014, 14(7), 11957-11992; doi:10.3390/s140711957     7 July 2014

Author to whom correspondence should be addressed; E-Mail:; Tel.: +39-011-090-3403; Fax: +39-011-090-3401.

1. Introduction

The term “Smart Textiles” refers to a broad field of studies and products that extend the functionality and usefulness of common fabrics. Smart Textiles are defined as textile products such as fibers and filaments, yarns together with woven, knitted or non-woven structures, which can interact with the environment/user. The convergence of textiles and electronics (e-textiles) can be relevant for the development of smart materials that are capable of accomplishing a wide spectrum of functions, found in rigid and non-flexible electronic products nowadays. Smart Textiles will serve as a means of increasing social welfare and they might lead to important savings on welfare budget. They integrate a high level of intelligence and can be divided into three subgroups:
  •     Passive smart textiles: only able to sense the environment/user, based on sensors;
  •     Active smart textiles: reactive sensing to stimuli from the environment, integrating an actuator function and a sensing device;
  •     Very smart textiles: able to sense, react and adapt their behavior to the given circumstances.
Sensors provide a nervous system to detect signals, thus in a passive smart material, the existence of sensors is essential. The actuators act upon the detected signal either autonomously or from a central control unit [1]; together with the sensors, they are the essential element for active smart materials. Fabric-based sensing has been a large field of research in the biomedical and safety communities [2]. The fabric sensors can be used for electrocardiogram (ECG) [3], electromyography (EMG) [4], and electroencephalography (EEG) [5,6] sensing; fabrics incorporating thermocouples can be used for sensing temperature [7]; luminescent elements integrated in fabrics could be used for biophotonic sensing [8]; shape-sensitive fabrics can sense movement, and can be combined with EMG sensing to derive muscle fitness [9]. Carbon electrodes integrated into fabrics can be used to detect specific environmental or biomedical features such as oxygen, salinity, moisture, or contaminants [10,11].
Active functionality could include power generation or storage [12], human interface elements [13], radio frequency (RF) functionality, or assistive technology [14]. All electronic devices require power, and this is a significant design challenge for Smart Fabrics. Power generation can be achieved through piezoelectric [15] elements that harvest energy from motion or photovoltaic elements [16]. Human interfaces to active systems can be roughly grouped into two categories: input devices and annunciation or display devices. Input devices can include capacitive patches that function as pushbuttons [17], or shape-sensitive fabrics [18] that can record motion or flexing, pressure, and stretching or compression. Annunciation and display devices may include fabric speakers [17], electroluminescent yarns [19], or yarns that are processed to contain arrays of organic light emitting diodes (OLEDs) [20]. Fabrics can also include elements that provide bio-feedback [21] or simply vibrate. Fabric-based antennas are a relatively simple application of Smart Fabrics. Simple fabric antennas are merely conductive yarns of specific lengths that can be stitched or woven into non-conducting fabrics [22].
A study about intelligent textiles is at his first stage reduced to a study on smart materials. In a second phase, it is to be considered in which way these smart materials can be processed into a textile material. These smart materials are incorporated into the textile structure by different technologies (Figure 1). Among those we may list embroidering [23], sewing, non-woven textile, knitting [24], weaving [25], making a spinning [26], braiding [27], coating/laminating [28], printing [29] and chemical treatments [30] that provide specific features such as controlled hydrophobic behavior.

Innumerable combinations of these source materials result into a whole range of textiles but sometimes the commercial output is represented by garments that contain conventional cables, miniaturized electronic components and special connectors. As humans prefer to wear comfortable textiles rather than hard, rigid boxes, first efforts have been made to use the textiles themselves for electronic functions [31].
Smart Textiles present a challenge in several fields such as the medical, sport, and artistic communities, the military and aerospace. The early European Commission's 6th and 7th framework programs provided significant research and development funding for personal health monitoring through smart wearable systems and for projects targeting the integration of sensors, energy sources, processing, and communication inside the clothing. The list below shows the projects funded by the European Commission's 6th and 7th Framework programs that have focused on smart fabrics and interactive textiles (Table 1) [32,33].

Particular attention in this review is devoted to describing the materials and methodologies to develop smart textiles. Each scientific approach will be followed by a review of the related work carried out by companies, universities or research institutes.

2. Fabrication Techniques

Over the past decade, many techniques and materials have been used in order to realize smart textiles. In the following section, together with metodologies, the relative projects are also presented.

2.1. Conductive Fibers

Initially, conductive threads were mainly used in technical areas: clean room garments, military apparel, medical application and electronics manufacturing [34]. Textile structures that exhibit conductivity or serve an electronic or computational function are called electro-textiles [35]. They can have a variety of functions, like antistatic applications [36], electromagnetic interference shielding (EMI) [37], electronic applications, infrared absorption or protective clothing in explosive areas [38].
The conventional process to produce metal fibers is wire drawing, a mechanical production process. This process is characterized by its various drawing steps, called coarse, medium, fine and carding train (Figure 2).

The drawing die, used to draw the fiber, consists of a steel mount with a core out of ceramics, carbide or diamond. The initial diameter of the metal wire varies depending on the material. For copper, for instance, it is usually is 8 mm, while for iron it is 5 mm. After drawing, the wire is annealed at temperatures ranging between 600 and 900 °C. Subsequently, they are quenched. The fine metal wire is then wrapped onto a revolving wire drawing cylinder [39].
The Swiss company Elektrisola Feindraht AG (Escholzmatt, Switzerland) produces metal monofilaments that can be blended with all sorts of fibers or that can be directly used in weaving and knitting. Importantly, according to the material used, there are different electrical properties (see Table 2). The products range from copper (Cu) and silver-plated copper (Cu/Ag) filaments, brass (Ms) and silver-plated brass (Ms/Ag) filaments, aluminum (Al) filaments to copper-clad aluminum (CCA) filaments [40].

The company Swiss-Shield® (Flums, Switzerland) specializes in producing metal monofilaments which are incorporated into base yarns like cotton, polyester, polyamides and aramides. The metal monofilaments are made out of copper, brass, bronze, silver, gold, aluminum, for instance. The following Figure 3 shows a typical conductive yarn with base fibers and a metal monofilament twisted around them [41].

2.2. Treated Conductive Fibers

Instead of attaching electronics to textile substrates, the yarns of the textile can be functionalized with electronics. Electrically conductive fibers can also be produced by coating the fibers with metals, galvanic substances or metallic salts. Coatings can be applied to the surface of fibers, yarns, or even fabrics to create electrically conductive textiles. Common textile coating processes include electroless plating, evaporative deposition, sputtering, coating the textile with a conductive polymer [42].
In [43] a method to fabricate fibers with different material layers and material structuring is presented. The fabrication process is based on the conventional preform-based fiber-processing, easily yielding kilometers of functional fiber during the process.
Another relevant work is to use the crossing yarns in a textile to fabricate a transistor [44,45]. A schematic of a yarn-based transistor is shown in Figure 4. The resulting transistor shows an on-off current ratio of more than 1000, operated with a gate voltage of 1.5 V.
Figure 3 represents two yarns coated with PEDOT:PSS, one serving as the gate contact for the transistor while the second serves as drain and source contact. At the crossing of the two yarns, an electrolyte is placed. A redox process at the interface between electrolyte and PEDOT:PSS turns the transistor on and off [44].
The Textile Research Institute of Thuringia-Vogtland (TITV, Greiz, Germany) has succeeded in producing conductive threads by coating a conventional yarn with metal layers, called ELITEX®. They used Shieldex Nylon 66 threads that are coated with a thin silver layer as base material. With a specific conductivity of about 1.2 × 103 S·cm−1, the threads have a specific resistance of about 8.34 O·mm2/m. Hence, the resistivity is too high to conduct current [46].

2.3. Conductive Fabrics

There are different ways to produce electrically conductive fabrics. One method is to integrate conductive yarns in a textile structure, e.g., by weaving. However, the integration of conductive yarns in a structure is a complex and seldom a uniform process as it needs to be ensured that the electrically conductive fabric is comfortable to wear or soft in touch rather than hard and rigid. Conductivity can be established with different thread types (Figure 5):
However, woven fabric structures can provide a complex network that can be used as elaborated electrical circuits with numerous electrically conducting and non-conducting constituents, and be structured to have multiple layers and spaces to accommodate electronic devices.
Researchers at the Electronics Department and the Wearable Computing Laboratory at the ETH in Zürich produced a plain woven textile structure consisting of polyester yarns that are twisted with one copper thread. Initially, they started with a standard design (Figure 6a), then the researchers design a hybrid fabric called PETEX (Figure 6b) [47]. It consists of woven polyester monofilament yarn (PET) with diameter of 42 μm and copper alloy wires with diameter 50 ± 8 μm (AWG 461). Each copper wire itself is coated with a polyurethane varnish as electrical insulation. The copper wire grid in the textile features a spacing of 570 μm (mesh count in warp and in weft is 17.5 cm−1).
With the PETEX the ETH researchers introduced a new approach to Smart Textiles and in particular a new manufacturing method. The aim was the possibility to realize a custom textile circuit (Figure 7). The wiring structure among circuit components is established by connecting the fabric embedded copper wires. Cuts must be placed at specific locations in the wiring in order to avoid short-circuits between copper wires. In particular, the procedure is as follows [47]:

  •     coating removal on copper wires at defined intersections with laser ablation;
  •     cutting the wires avoiding the signal leakage with laser;
  •     creating the interconnection with a drop of conductive adhesive;
  •     adding mechanical and electrical protection with an epoxy resin deposition.
The British company Baltex (Ilkeston, UK) uses the knitting technology to incorporate metal wires in textile structures. Their fabrics, which they commercialize under the name Feratec®, can be used mainly for two purposes, namely heatable textiles and electro-magnetic shielding materials [48].
The American company Thremshield LLC (Niagara Falls, NY, USA) produces metallized woven nylon fabrics in different shapes and profiles. The metals they use are silver, copper or a combination of copper and nickel [49].
The Danish company Chr. Dalsgaard Project Development (Aarhus, Denmark) works with the development of weaving electronics into fabrics, electronic conductors in clothing, operating panels in textiles (soft keyboards, displays, etc.) and micro-sensors. The conductive yarn they use is a copper thread, plated with a silver layer and coated with polyester [50].
Another possibility to achieve a conductive fabric is to attach a conductive structure to a ground structure by using the embroidery technique. In 2000, the Massachusetts Institute of Technology Media Laboratory researches were the first to propose a way of stitching patterns that can define circuit traces, component connection pads, or sensing surfaces designed with traditional CAD tools for circuit layout (Figure 8) [31].
2.4. Conductive Inks

Interactive electronic textiles can also be produced by using conductive inks. First of all conductive inks must contain an appropriate highly conductive metal precursor such as Ag, Cu, and Au NPs and a carrier vehicle. Most of them are water based: water is the main ink component and to limit contaminants, it must be as pure as possible. These specialized inks can be printed onto various materials, among them textiles, to create electrically active patterns. Screen printing also makes integration with planar electronics simpler than with conductive yarn systems.
There are several technologies that can print conductive material on different substrate. Sheet-based inkjet and screen printing are best for low-volume, high-precision work.
Inkjets are flexible and versatile, and can be set up with relatively low effort [51]. Inkjets offer lower throughput of around 100 m2/h and lower resolution (ca. 50 μm). It is well suited for low-viscosity, soluble materials like organic semiconductors. With high-viscosity materials, like organic dielectrics, and dispersed particles, like inorganic metal inks, difficulties due to nozzle clogging occur. Because ink is deposited via droplets, thickness and dispersion homogeneity is reduced. Simultaneously using many nozzles and pre-structuring the substrate allows improvements in productivity and resolution, respectively [52].
For inkjet printing, the inks should respect the following requirements [53]:
  • high electrical conductivity;
  • resistance to oxidation;
  • dry out without clogging the nozzle during printing;
  • good adhesion to the substrate;
  • lower particle aggregation;
  • suitable viscosity and surface tension.
Inks may also contain additives which are used to tune ink properties or to add specific properties thus increasing its performance [54].
After inkjet printing of a metal NP-based ink, in order to form a conductive printed pattern, particles must be sintered to create continuous connectivity between them and obtain electrical percolation. Sintering is the process of welding particles together at temperatures below the corresponding bulk metal melting point, involving surface diffusion phenomena rather than phase change between the solid and the liquid [55]. For instance, with inks based on gold NPs (1.5 nm diameter), the melting temperature was experimentally found to be as low as 380 °C, while for inks based on silver NPs (15 to 20 nm in diameter), a complete sintering can be obtained down to 180 °C [54,56].
Screen printing is appropriate for fabricating electrics and electronics due to its ability to produce patterned, thick layers from paste-like materials. The screen printing procedure, a stencil process, comprises the printing of a viscous paste through a patterned fabric screen and is usually followed by a drying process. The method can be applied to flat or cylindrical substrates. Depending on the substrate materials and the requirements for the printed structures, a high temperature densification can also be necessary (organic substrate T < 150 °C. Glass, ceramic and metal substrate T > 500 °C) [57].
This method can produce conducting lines from inorganic materials (e.g., for circuit boards and antennas), but also insulating and passivating layers. Generally, the throughput is about 50 m2/h with a resolution lower than 100 μm. By optimizing of the process condition and material the resolution may decrease to 30 microns line/space on thin flexible substrates [58].
This versatile and comparatively simple method is used mainly for conductive and dielectric layers [59], but also organic semiconductors can be printed, e.g., for OPVCs and OFETs [60].
Recently the researchers of University of Southampton [61] have developed an innovative screen printed network of electrodes and associated conductive tracks on textiles for medical applications (Figure 9). A polyurethane paste is screen printed on to a woven textile to create a smooth, high surface energy interface layer and a silver paste is subsequently printed on top of this interface layer to provide a conductive track. Silver pastes have been printed on to non-woven textiles to create wearable health monitoring devices.
The researchers developed different bio-potential sensing systems with dry electrodes and conductive ink for signal traces in order to demonstrate that this technology could be used for biomedical application. In particular the application tests were: ECG, facial EMG (Figure 10) and forearm EMG.
The National Textile Center of the North Carolina State University (Raleigh, NC, USA) is currently working on a project dealing with ‘Printing Electric Circuits on Non-Woven Fabrics’ used to produce a prototype for a physiological monitoring garment that measures ECG, heart-rate, respiration and temperature. In the scope of the project they work together with conductive ink manufacturers. For their experimental investigations and to succeed in producing samples of antennas printed on non-woven textile structures, they used Evolon® by Freudenberg KG (Weinheim, Germany), Tyvek® by DuPont™ (Wilmington, DE, USA) FiberWeb Resolution™ Print Media by BBA FiberWeb™ (Old Hickory, TN, USA) as well as conductive inks made by Precisia LLC (Clark, NJ, USA) and Creative Materials Inc. (Ayer, MA, USA) [62]. Table 3 shows the ink's sheet resistivity.

A group of researchers of Istituto Italiano di Tecnologia—Center for Space Human Robotics, Politecnico di Torino—Applied Science and Technology Department, in collaboration with a spin-off company, Politronica Inkjet Printing S.r.l. (Torino, Italy), developed EMG sensor matrices by inkjet printing a silver nanoparticle-based ink on a polyimide flexible patch. Results indicate excellent behavior with respect to traditional bulk silver systems and a base conductivity of 35% with respect to bulk silver [63].

2.5. Conductive Materials as Sensors

Conductive textiles that change their electrical properties as a result of the environmental impact can be used as sensors. Typical examples are textiles that react to deformations such as pressure sensors, stretch sensors and breathing sensors. On the other hand, with smart textiles we have the further possibility to make bio-potential sensors.
2.5.1. Stretch Sensors
Stretch sensors are predominantly used for sensing and monitoring body parameters, as the textile is in contact with the skin over a large body area. This means that monitoring can take place at several locations on the body. For instance, these sensors can be used for determining: heart rate, respiration, movement and pressure blood [64]. A specific structure of textile sensors is that integrating fibers featuring piezo-resistive properties, enabling their use as strain or deformation sensor.
A first approach to integrate electronics into textile structures was certainly achieved by gloves wired to the computer that allows it to take input from user's hand gestures. Sensors in the glove detect (Figure 11) the wearer's hand movements. Four wires were used for each finger or tube to build up a circuit. The voltages coming out are varying depending on the finger position [65].

A Flemish consortium of universities and companies, among them the textile department of Ghent University, developed a prototype suit called Intellitex. It is a biomedical suit meant for the long term monitoring of heart rate and respiration of children at the hospital. To measure the ECG, a three-electrode configuration is used. Two measurement electrodes are placed on a horizontal line on the thorax, a third one, acting as a reference (Right Drive Leg, RDL), is placed on the lower part of the abdomen [66].
Philips Research Laboratory (Redhill, UK), developed a stretch sensor integrated into a garment. The stretch sensor, which is produced out of conductive and elastic yarns knitted together, is based on the fact that the electrical resistance changes when stretching the sensing material. Thus, it can be used to control the volume of music or changing the track [67].

2.5.2. Pressure Sensors

Pressure sensors are commonly used either as switches and interfaces with electronic devices or also to monitor vital signs of the user.
Several technologies [68,69], have been developed to manufacture plane pressure sensors. The operating principle is that of changes in piezoelectric resonance frequency with the applied pressure or capacitance variations caused by an elastic foam overlaid with a matrix of conductive threads. For capacitive sensors, a change in parasitic capacitance and resistance can be compensated by the electronics, therefore the wiring has a marginal influence on the sensed signal [9].
The Wearable Computing Lab of ETH Zurich has developed a matrix with several capacitive pressure sensors for integration into a piece of clothing (Figure 12). With this method they are able to measure pressure on a human body and detect muscle activity on the upper arm. Applying this matrix on different body areas, it can provide more details for motion tracking or for the detection of physical state of the muscles [9].
The British company Eleksen Limited, formerly Electrotextiles (Tunstall, UK), commercializes a soft and flexible textile based sensory fabric under the tradename ElekTex® Smart Fabric Interfaces. It is a combination of conductive fibers and nylon. This combination results into a durable, reasonably priced, washable and even wearable 3D structure [70].
The American-based company Logitech Inc. (Le Lieu, Switzerland) manufactures a soft-touch KeyCaseTM keyboard that can wrap around a personal digital assistant (PDA) for storage and protection. The keyboard is lightweight and made out of textile [71].
The U.S. company Pressure Profile Systems, Inc. (Los Angeles, CA, USA) designs, develops and manufactures high performance multi-element pressure and tactile sensing systems, called Tactarray and ConTacts (Figure 13a) [72].

The team of the Design for Life Centre at Brunel University in Surrey (UK) has developed a fabric (the Sensory Fabric) that can be used by handicapped children to make themselves understood (Figure 13b). The Sensory Fabric consists of two layers of electrically conductive textile, divided by a layer of non-conductive mesh. When the textile is pressurized, one conductive layer comes into contact with the other, as a result of which an electric stream can flow [73].
The team of the Center for Micro-Bio Robotics of Istituto Italiano di Tecnologia (Pisa, Italy) produced a composite capacitive three-axial sensor based entirely on commercial conductive fabrics, demonstrating its high compliance and stability under manipulation [74].
2.5.3. Electrochemical Sensors
Recent insights into novel fabrication methodologies and electrochemical techniques have resulted in the demonstration of chemical sensors able to augment conventional physical measurements (i.e., heart rate, EEG, ECG, etc.) [75]. Recent insights have resulted in the development of a new generation of textile-based chemical sensors that are able to improve conventional physical sensors with more information. Flexible and textile-based screen printed electrochemical sensors may be candidates for non-invasive monitoring, but these devices cannot easily be attached to the body and in particular to the skin.
The researchers of National Centre for Sensor Research, Dublin City University (Ireland), present examples of wearable chemical sensors that monitor the person and also their environment. In particular the chemical sensor was able to measure and analyze sweat in real-time on the body. They have developed a microchip version of the platform to measure changes in the pH of sweat (Figures 13a and 14a). The color change of the pH sensitive fabric was detected by placing a surface mount (SMT) LED and photodiode module on either side of the chip, aligned with the pH sensitive fabric. The final device (180 μm thick) is flexible and can adapt to the body [76].

2.5.4. Textile Energy Harvesting and Portable Power Supply System
Power supply technologies provide the electrical power for activating the components integrated in the electronic textile; this is still a critical issue in the field of wearable electronics. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, have not kept pace with this progress due to their tenuous mechanical stability, causing them to remain as the limiting elements in the entire technology [77]. For these reasons, the aim is to develop wearable systems capable of accumulating energy dissipated by the body.
The supply of energy by the user's body during everyday actions through leg motions and body heat is also exploited by other research teams. For example, Infineon is currently trying, to recover energy by body movements to feed Mp3 players integrated in a jacket using piezoelectric materials [78]. In the UK the University of Bolton has developed a novel technology that integrates piezoelectric polymer substrate and photovoltaic coating system to create a film or fibre structure that is capable of harvesting energy from nature, including sun, rain, wind, wave and tide [79].
In a project funded by the Engineering and Physical Sciences Research Council (EPSRC), Researchers at the University of Southampton's School of Electronics and Computer Science (ECS) are developing an energy harvesting film in textiles using a rapid printing processes and active printed inks [80,81].
Georgia Tech researchers led by materials-science professor Zhong Lin Wang, have made a flexible fiber coated with zinc oxide nanowires that can convert mechanical energy into electricity. The researchers say the fibers should be able to harvest any kind of vibration or motion for electric current. Gold-plated zinc oxide nanowires, each about 3.5 micrometers tall, are grown on a flexible polymer fiber and these nanowires brush against untreated nanowires, which flex and generate current. Yarn spun from the fibers could lead to fabrics that convert body movements into electric current [82].
Another technology is represented by the solar clothing in which the solar energy is harvested through new generation of flexible solar cells [83,84]. Integration of flexible solar cells into clothing can provide power for portable electronic devices. Photovoltaic is the most advanced way of providing electricity far from any mains supply, although it suffers from the limits of ambient light intensity. Nevertheless the energy demand of portable devices is now low enough that clothing-integrated solar cells are able to power most mobile electronics [85].
The ILLUM jacket (Figure 15) is based on technologies including printed electroluminescent ink and printed photovoltaic technology. The functional parts are placed outside the jacket and into several ergonomic panels, while at the front and the photovoltaic source at the shoulders and top of the back [86].

Thermotron of UNITIKA (Osaka, Japan) is a particular fabric able to converts sun light into thermal energy while storing heat without wasting it. Inside the Thermotron there are microparticles of zirconium carbide which allow the fabric to absorb and filter sunlight. The inner layer of the fabric withholds the heat generated and prevents it from becoming lost, thus providing a salutary effect on the human body [87].
An example of a battery capable of providing electrical power for interactive electronic textiles was recently developed by a German research team led by The Fraunhofer Institute for Reliability and Micro-integration (FhG-IZM, Berlin, Germany). This research team developed a small battery that can be printed on a substrate and fabricated at high production speeds in button-sized or coin-type format at a cost below one USD. The battery is fabricated by screen printing a thick layer of a silver-oxide based paste, then applying a thin sealing layer. The final result is a textile substrate with a printed 120 μm thick AgO-ZN battery. These batteries can be printed on a variety of substrates [88].
2.6. Planar Fashionable Circuit Board (P-FCB)
The P-FCB is one of the new technologies allowing implementation of a circuit board on a plain fabric patch for wearable electronics applications. It features a soft and flexible impression just as normal clothes.
The P-FCB substrate is fabricated using woven fabrics. The planar electrodes are deposited on the fabric patch directly by silk screening of conducting epoxy or by gold sputtering. First, the circuit board is silkscreen printed on the fabric patch. Then the IC is placed on the fabric and wire-bonded to the patterned electrodes. Finally, the IC is molded with non-conductive epoxy (Figure 16a) [89].
With these techniques, KAIST researchers also developed a multilayer circuit (Figure 16b). The previous research highlight how electrical and mechanical characteristics and valuable system design parameters are obtained, such as maximum power consumption, maximum current density, crosstalk between neighboring two lines, and durability [90].

2.7. Wearable Antenna

Thanks to the rapid progress on the fabrication of conductive textiles, a significant development of wearable antennas has begun, exploiting new flexible and conformable smart structures [91].
An antenna is essential, if the purpose is to develop a wearable and autonomous system. It allows one to transfer information from the sensors hosted inside the garment to a control unit or to monitor other electronic parameters.
A wearable antenna is thus the bond that integrates clothes into the communication system, making electronic devices less obtrusive. To achieve good results, wearable antennas have to be thin, lightweight, low maintenance, robust, inexpensive and easily integrated in radio frequency (RF) circuits. Planar structures, flexible conductive and dielectric materials are specific requirements for wearable antennas [92,93].
Several properties of the materials influence the behavior of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate [94,95]
In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. Therefore it is important to know how these characteristics influence the behavior of the antenna in order to minimize unwanted effects.
Another issue regards the movement of the body that can deform the spatial geometry of the antenna and affect its performance. When the textile fabric adapts to the surface topology it bends and deforms, causing changes to its electromagnetic properties and thus influencing the antenna performance [96]. Thus, a wearable FM antenna should be designed so as to be wider than the FM broadcast band (about 81–130 MHz) not to suffer from the detuning caused by the human body [97].
To summarize, the guidelines for a correct antenna project are shown below:
  •     choosing the correct positioning of the textile antenna [98,99];
  •     the textile antenna must be made with an accurate thickness stacking the different fabrics [99];
  •     the geometrical dimensions of the patch must remain stable [100];
  •     the connections between the layers must not affect the electrical properties and the connections with other parts of “e-garments” have to be stable and robust [101–103].
If some of these points are not followed, undesired effects may occur to the functioning of the device.
Researchers at Katholieke Universiteit Leuven and Universiti Malaysia Perlis were the first to develop a fully textile waveguide antenna using a material inspired unit cell that is also used in composite right/left-handed transmission lines. The antenna is compact, robust and can be used for 2.45 and 5.4 GHz dual-band WLAN applications [104].
Patria (Halli, Finland) is a company with expertise in textile antenna design. It develops textile antennas composed by conventional or industrial fabrics, and typically conductive antenna parts are made out of modern conductive fibers [105].
Textiles RFID is a particular solution of antenna. In this sector TexTrace AG (Frick, Switzerland) provides the manufacturing line as well as the components for industrial in-house production of woven RFID labels. Integrate RFID and the label will provide added value from garment manufacturing through logistics to sales and after-sales management [106].

2.8. Stretchable Interconnection

Deformable electronic circuits, in particular in bio-medical application, are needed. E-textiles are the candidate technology for this scope but an important aspect regards the interconnections between components and devices. In most cases the approach used is to develop sinuous electroplated metallic wires in a stretchable substrate material [107].
Figure 17 presents a stretchable interconnection structure. This configuration, called “horseshoe-shape”, is able to accommodate large deformation in response to a mechanical stress, preserving the electrical properties [108].

Indeed, with high-frequency signal the interconnection have to be stretchable and therefore the substrate and the conductors have to be stretchable as well. Usually, a polymeric material is chosen as encapsulating substrate, because it can be stretched and also because it may be bio-compatible [109].
Interconnections made with these techniques coupled with conductive yarns can go beyond actual issues regarding the lack of robustness in e-textiles circuit.

(End of Part 1} More to follow

23.07.2015, 14:04   MDPI AG (Basel, Switzerland)
Image by MDPI AG (Basel, Switzerland)
Views: 2672


When we provide links to other Web resources, the Company is not responsible for the accuracy, usefulness, safety, or intellectual property rights of or relating to such content.

Overview and Analysis

of information from Internet resources. Follow our Instagram Daily Feed @MedGizmo, Twitter Daily Feed @MedGizmo.
© 2016 MedGizmo